INFORMATICS PRACTICES (NEW)
SUBJECT CODE-065
CH-02(PYTHAN PANDAS)
What is Pythan Pandas
Pandas is an open source, BSD-licensed library providing high- performance, easy-to-use data structures and data analysis tools for the Python programming language.
Python with pandas is in use in a wide variety of academic and commercial domains, including Finance, Neuroscience, Economics, Statistics, Advertising, Web Analytics, and more.

What problem does pandas solve?
It enables us to carry out our entire data analysis workflow in Python. Combined with the excellent IPython toolkit and other libraries, the environment for doing data analysis in Python excels in performance, productivity, and the ability to collaborate.

Some of the Highlights of Python pandas
1. A fast and efficient DataFrame object for data manipulation with integratedindexing.
2. Tools for reading and writing data between in-memory data structures and different formats: CSV and text files, Microsoft Excel, SQL databases etc.
3. Flexible reshaping and pivoting of datasets

Installing pandas
The simplest way to install not only pandas, but Python and the most popular packages that is with Anaconda, a cross-platform (Linux, Mac OS X, Windows) Python distribution for data analytics and scientific computing. After running the installer, the user will have access to pandas and the rest of the stack without needing to install anything else, and without needing to wait for any software to be compiled.
Installation instructions for Anaconda can be found here.
Another advantage to installing Anaconda is that you don’t need admin rights to install it. Anaconda can install in the user’s home directory, which makes it trivial to delete Anaconda if you decide (just delete that folder).

Note: Each time we need to use pandas in our python program we need to write a line of code at the top of the program:
import pandas as <identifier_name>
Above statement will import the pandas library to our program. We will use two different pandas libraries in in our programs
1. Series
2. DataFrames
pandas Series
Series is a one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.). The axis labels are collectively referred to as the index. The basic method to create a Series is to call:
import pandas as <identifier name>
<Series_name> = <identifier name>.Series(data, index=index) Data can be many different things:
· a Python dict
· a Python list
· a Python tuple
The passed index is a list of axis labels.
Step by Step method to create a pandas Series
Step 1
Suppose we have a list of games created with following python codes: games_list = ['Cricket', 'Volleyball', 'Judo', 'Hockey']
Step 2
Now we create a pandas Series with above list
Python script to generate a Series object from List import pandas as ps
games_list = ['Cricket', 'Volleyball', 'Judo', 'Hockey'] s= ps.Series(games_list)
print(s)
OUTPUT
0 Cricket
1 Volleyball 2 Judo
3 Hockey dtype: object
In the above output 0,1,2,3 are the indexes of list values. We can also create our own index for each value. Let us create another series with the same values with our own index values:
Python script to generate a Series object from List using custom Index import pandas as pd
games_list = ['Cricket', 'Volleyball', 'Judo', 'Hockey'] s= pd.Series(games_list, index =['G1','G2','G3','G4']) print(s)
OUTPUT
G1	CRICKET
G2	VOLLEYBALL G3		JUDO
G4	HOCKEY
dtype: object
In the above output Game_1, Game_2, Game_3, Game_4 are our own created indexes of list values.
In the similar manner we can create pandas Series with different data (tuple, dictionary, Object) etc.
Now we will create a Series with a Dictionary
Suppose we have a dictionary of games created with the following Python codes:

d = {'Cricket': 1, 'Volleyball': 2, 'Judo': 3 , ‘Hockey’:4} Now we create a pandas Series with above dictionary # Python script to generate a Dictionary Object import pandas as pd
games_dict = {'Cricket': 1, 'Volleyball': 2, 'Judo': 3 , 'Hockey':4} s= pd.Series(games_dict)
print(s)
OUTPUT
Cricket 1 Volleyball 2 Judo 3 Hockey 4 Dtype : int64

The Python Pandas DataFrame
DataFrame is a Two-dimensional size-mutable, potentially heterogeneous tabular data structure. Tabular data structure has rows and columns. DataFrame is a way to represent and work with tabular data.
Pandas DataFrame is similar to excel sheet and looks like this

How to create a Pandas DataFrame?
In the real world, a Panda DataFrame will be created by loading the datasets from the permanent storage, including but not limited to excel, csv and MySQL database.
First we will use Python Data Structures (Dictionary and list) to create DataFrame.
Using Python Dictionary to create a DataFrame object name_dict = { 'name' : ["Anita", "Sajal", "Ayaan", "Abhey"], 'age' : [14,32, 3, 6] }
If we print this dictionary using print(name_dict) command, it will show us the output like this:
{'name': ['Anita', 'Sajal', 'Ayaan', 'Abhey'], 'age': [14, 32, 3, 6]}

We can create a Pandas DataFrame out of this dictionary
Python script to generate a Dictionary Object and print using variable import pandas as pd
name_dict = {
 	'Name' : ["Anita", "Sajal", "Ayaan", "Abhey"],
 	'Age' : [14,32, 4, 6]
 	}
df = pd.DataFrame(name_dict) print(df)
Output
 (
Name
Age
)
0 Anita	14 1 Sajal		15 2 Ayaan			4 3 Abhey			6
As you can see the output generated for the DataFrame object is look similar to what we have seen in the excel sheet as. Only difference is that the default index value for the first row is 0 in DataFrame whereas in excel sheet this value is 1. We can also customize this index value as per our need.
Note: A side effect of dictionary is that when accessing the same dictionary at two separate times, the order in which the information is returned by the does not remained constant.
One more example of DataFrame with customize index value
Python script to generate a Dictionary Object with custom index import pandas as pd
name_dict = {
 'Name' : ["Anita", "Sajal", "Ayaan", "Abhey"],
 (
'Age' : [14,32,

4,

6]
}
)
df = pd.DataFrame(name_dict , index=[1,2,3,4]) print(df)
Output
 (
Name
Age
)
1 Anita	14 2 Sajal		15 3 Ayaan			4 4 Abhey			6
In the preceding output the index values start from 1 instead of 0
Viewing the Data of a DataFrame
To selectively view the rows, we can use head(…) and tail(…) functions, which by default give first or last five rows (if no input is provided), otherwise shows specific number of rows from top or bottom
Here is how it displays the contents df.head()		# Displays first Five Rows df.tails()	# Displays last Five Rows print(df.head(2)) # Displays first Two Rows print(df.tail(1)) #Displays last One Row
print(df.head(-2)) #Displays all rows except last two rows print(df.tail(-1)) #Displays all rows except first row Advance operations on Data Frames:
Pivoting:
Sample Pivot chart created in Excel
A Pivot Table is an interactive way to quickly summarize large amounts of data. We can use a Pivot Table to analyse numerical data in detail, and answer unanticipated questions about our data. A PivotTable is especially designed for:
1. Querying large amounts of data in many user-friendly ways.
2. Expanding and collapsing levels of data to focus your results.
3. Filtering, sorting, grouping, and conditionally formatting the most useful and interesting subset of data enabling you to focus on just the information you want.
Creating Pivoting Tables with pandas’ DataFrame
Pivot Tables in pandas
With pandas’ pivot tables we can create a spreadsheet-style pivot table using DataFrame.
Steps to create a pandas’ pivot table Step 1
Create a DataFrame using Dictionary or any other sequence Step 2
Use previously created DataFrame to generate a Pivot Table Step 3
Print the Pivot Table
Example 1:
Pyhton script demonstrating the use of pivot_table() method import pandas as pd
name_dict = {
 	'INVIGILATOR' : ["Rajesh", "Naveen","Anil","Naveen","Rajesh"],
 	'AMOUNT' : [550,550,550,550,550],
 	}
df = pd.DataFrame(name_dict) print(df)
pd.pivot_table(df, index = ['INVIGILATOR'],aggfunc=’sum’)
Output
 	INVIGILATOR AMOUNT
 (
0
Rajesh
550
)

	1
	Naveen
	550

	
	
	

	2
	Anil
	550

	
	
	

	3
	Naveen
	550

	
	
	

	4
	Rajesh
	550

Output in pivot table form
INVIGILATOR	AMOUNT

	Anil
	550

	
	

	Naveen
	1100

	
	

	Rajesh
	1100

Example 2:
Pyhton script demonstrating the use of pivot_table() method import pandas as pd
sale_dict = {
 'ITEM_NAME' : ["NOTEBOOK", "PEN","INKPEN","NOTEBOOK","PEN"],
 	'AMOUNT' : [100,50,30,100,50],
 	'QUANTITY' :[2,5,3,3,5]
 	}
df = pd.DataFrame(sale_dict) print(df)
 (
pd.pivot_table(df,
index
=
['ITEM_NAME','AMOUNT','QUANTITY'],
)
aggfunc='sum')
Output:
ITEM_NAME AMOUNT QUANTITY
 (
0
NOTEBOOK
100
2
)

	1
	PEN
	50
	5

	
	
	
	

	2
	INKPEN
	30
	3

 (
3

NOTEBOOK
100
3
)

 (
4
PEN
50
5
)
Output in pivot table form
ITEM_NAME	AMOUNT QUANTITY

	INKPEN
	30
	3

	
	
	

	NOTEBOOK
	100
	2

 	3
 (
PEN
50
5
)
Descriptive Statistics
After data collection, we generally use different ways to summarise the data. Python pandas provide different methods to generate descriptive statistics. Some of the common methods are:
min, max, mode, mean, count, sum, median Example 1:
#Total sales per employee import pandas as pd
 (
"Jaswant","Karan","Akshit",
"Jaswant","Karan","Akshit",
)monthlysale	=	{	'Salesman'	:	["Akshit",	"Jaswant","Karan","Akshit",
"Jaswant","Karan"],
 	'Sales' : [1000,300,800,1000,500,60,1000,900,300,1000,900,50],
 	'Quarter' :[1,1,1,2,2,2,3,3,3,4,4,4],
 (
'District':
)
['Kangra','Hamirpur','Kangra','Mandi','Hamirpur','Kangra','Kangra','Hami rpur','Mandi','Hamirpur','Hamirpur','Kangra']
 	}
df = pd.DataFrame(monthlysale) # Employee wise total sale:
pd.pivot_table(df, index = ['Salesman'], values = ['Sales'],aggfunc='sum')
Output:
Salesman	Sales

	Akshit
	4000

	
	

	Jaswant
	2600

	
	

	Karan
	1210

Example 2:
#Total sales Per District import pandas as pd
 (
"Jaswant","Karan","Akshit",
"Jaswant","Karan","Akshit",
)monthlysale	=	{	'Salesman'	:	["Akshit",	"Jaswant","Karan","Akshit",
"Jaswant","Karan"],
 	'Sales' : [1000,300,800,1000,500,60,1000,900,300,1000,900,50],
 	'Quarter' :[1,1,1,2,2,2,3,3,3,4,4,4],
 (
'District':
)
['Kangra','Hamirpur','Kangra','Mandi','Hamirpur','Kangra','Kangra','Hami rpur','Mandi','Hamirpur','Hamirpur','Kangra']
 	}
df = pd.DataFrame(monthlysale) # District wise total sale:

pd.pivot_table(df, index = ['District'], values = ['Sales'],aggfunc='sum')
Output:
District	Sales
 (
Hamirpur

3600
) (
Kangra
2910
) (
Mandi
1300
)

Example 3:
#Total sales per employee and per district

import pandas as pd
 (
"Jaswant","Karan","Akshit",
"Jaswant","Karan","Akshit",
)monthlysale	=	{	'Salesman'	:	["Akshit",	"Jaswant","Karan","Akshit",
"Jaswant","Karan"],
 	'Sales' : [1000,300,800,1000,500,60,1000,900,300,1000,900,50],
 	'Quarter' :[1,1,1,2,2,2,3,3,3,4,4,4],
 (
'District':
)
['Kangra','Hamirpur','Kangra','Mandi','Hamirpur','Kangra','Kangra','Hami rpur','Mandi','Hamirpur','Hamirpur','Kangra']
 	}
df = pd.DataFrame(monthlysale)
Employee and district wise total sale:
 (
pd.pivot_table(df,
index
=
['Salesman','District'],
values
=
)
['Sales'],aggfunc='sum')

Output:
Salesman District Sales Akshit Hamirpur 1000 Kangra 2000
Mandi 1000
Jaswant	Hamirpur 2600
 (
Karan
Kangra
910
)
Mandi	300

image1.png
v &

PP e o £

image2.png
LBENERRERRESE

1 [eaesHoocRA 23209 |50 - NARESH 1650)
2 [raesTiumaR /32019 [550 2/3/2010 550
5 Inavneer /32019 [550 2/4/2019 550
e saeev /32019 [550 9/3/2019 550
5 s /32019 [550 SNAVNEET T650)
5 namesn /32019 [550 28/4/2019 550
7 [rcThakR /32019550 2/3/2019 550
5 [Rajesn DoGRA /32019 [550 5/3/2019 550
5 [RaesTrumaR /3209|550 ~RAJESH DOGRA T650)
10 [avneer /3209|550 26/3/2015 550
T [saeev /3209|550 2/3/2019 550
T2 [shikka /32015 [550 5/3/2019 550
13 nasesi /32015 |50 SRAJEST KUMAR T650)
16 [rcTRAKGR /32019 [550 26/3/2015 550
5 [rcTRaKce 1¢/32015_[550 2/3/2019 550
16 [RalEsH 0oGRA 1¢/32019_[550 5/3/2019 550
7 [RaesTkomaR 12/32019_[550 SRC THAKUR T650)
15 [shikea 23/272019_[550 26/3/2015 550
15 [navneer 237272019550 2/3/2019 550
20 [sHikea 272019 550 9/3/2019 550
21 Inamesn 222019 Js50 SSANIEEV 100

T 2/3/2010 550
5/3/2019 550

SSHIKHA 2000

28/4/2010 550

2/3/2019 550

2/4/2019 550

9/3/2019 550

